Your location:  Home  >  Bearing News  >  World Bearing News
<<  Back

Rolling Bearing Calculations with Considerations of Geometric Deviations

Resource from:  https://www.powertransmission.com Likes:236
Sep 12,2023

4.png

Rolling bearing calculations are usually based on the assumption of ideal nominal geometries. However, actual components and assemblies are always subject to statically distributed geometric deviations resulting from the manufacturing and assembly processes. This leads to changes in the internal geometric conditions which have an effect on bearing characteristics such as the service life. The FVA-Workbench makes it possible for users to consider these geometric deviations in bearing calculations for more reliable results.

Problem Statement

Rolling bearings are indispensable components in all fields of mechanical engineering which allow for precise, low-friction, and cost-effective bearing arrangements for rotating components. Rolling bearings are typically calculated according to ISO/TS 16281. This generally assumes an ideal geometry for the actual raceways with no misalignment of the bearing axes.

However, this ideal situation can never be achieved in practice. The manufacturing and assembly processes always lead to geometric deviations which are expressed as a static distribution (Ref. 2). Furthermore, the loads during operation can cause deformations which influence the operating behavior of the bearings. For example, Fingerle (Ref. 3) has shown that meshing forces acting on the planetary gears cause ovalization of the wheel body. This leads to an increased or reduced bearing life compared to an ideally stiff wheel, depending on the conditions.

The integration of geometric deviations and their statically distributed characteristics in rolling bearing calculations results in a more accurate representation, which leads to improved results.

The FVA-Workbench (Ref. 4) software allows users to consider these form and position deviations in rolling bearing designs. The scripting interface also makes it possible to integrate user-defined routines. The following will show how these options can be used to perform bearing calculations, taking these statically distributed geometric deviations into consideration.

Consideration of Geometric Deviations in RollingBearing Design

The FVA-Workbench can be used for the modeling, configuration, and calculation of transmission systems. When modeling the entire system, an STP file of the casing can be imported, which can be then coupled with the bearing outer ring via a simple click workflow. This makes it possible to calculate the stiffness matrix and determine the equivalent stiffness according to Guyan (Ref. 5) without the use of external FE software. In addition to using bearing data according to manufacturer specifications (e.g., from rolling bearing catalogs), the rolling bearing geometry can also be directly specified. This includes profiling of the rolling elements and raceways, which makes it easy to consider form deviations.

Deviations on the outer ring raceway can be defined as radial deviations from the ideal circular form. For example, this can be used to define ovalization of the outer bearing ring. Figure 1 shows an example of form deviation of the outer ring, enhanced one-hundred-fold for clarity.

For rolling bearings with line contact, any kind of profiling can be defined in the axial direction for the rolling elements on the inner and outer ring.

Generally, manufacturers use specifically designed profile functions to improve the service life. In theory, however, any kind of form deviation of the raceways can be represented.

Figure 2 shows some example deviations in the axial direction with eight interpolation points. The rolling elements correspond to the suggested profile according to DIN 26281—with a crowned form deviation on the inner ring and a tapered form deviation on the outer ring. These values are also enhanced one-hundred-fold for clarity.

When using the slice model, DIN 26281 prescribes dividing the bearing into at least 30 axial slices. The FVA-Workbench supports any resolution, as long as this lower limit is not exceeded. For optimal resolution of the desired profiling in the slice model, a number of profiling interpolation points at least equal to the number of slices should be selected.

On the outer ring, additive deviations can be overlaid in both the longitudinal and circumferential directions.

In addition to these deviations on the raceways, an offset and misalignment of the casing-bearing seat can also be defined by specifying values for the vertical (v) and transverse (w) axes (for identification of the axes, see Figure 4). In the calculation, these values represent boundary conditions that are considered accordingly in solving the quasi-static equilibrium in the shaft-bearing-casing system.

The Scripting Module (Ref. 6) can be used to automate complex processes in the FVA-Workbench. Simple commands can be used to load additional data, run calculations, and create custom output reports. Possible output formats include simple text files, clearly prepared HTML reports or ready-configured Excel files.

For example, the Scripting Module can be used to load previously generated samples and process them in sequence. In this case, a sample describes a possible configuration of deviations as they can occur in reality.

Figure 3 shows the sequence for the statistical tolerance analysis in this example. The calculation is configured in an XML file in which the components and the form and position deviations are defined. The samples are then automatically created based on the input file and the configured sampling strategy (randomly or systematically according to an experimental plan). The input file is processed by a MATLAB script, which saves the geometry data of the individual samples in an Excel file that can be read by the FVA-Workbench. A model file for which the calculations are to be performed is also required as an input.

The FVA-Workbench is then started in Batch Mode via a command line call and automatically processes the generated samples and saves the calculation results in an Excel file.

The statistical analysis of the results is then performed using suitable MATLAB scripts. A results report can also be generated for individual samples in the FVA-Workbench. This report is output in HTML format and includes detailed, graphical calculation reports for the individual system components (e.g., shaft bending, flank pressure in tooth meshes, or lifetime).

Calculation Example

The following example will demonstrate the sequence using a simple system consisting of a casing and shaft with a fixed-floating bearing arrangement with a radial force F acting on the center of the shaft.


(https://www.powertransmission.com)
【CBCC News Statement】
1.The news above mentioned with detailed source are from internet.We are trying our best to assure they are accurate ,timely and safe so as to let bearing users and sellers read more related info.However, it doesn't mean we agree with any point of view referred in above contents and we are not responsible for the authenticity. If you want to publish the news,please note the source and you will be legally responsible for the news published.
2.All news edited and translated by us are specially noted the source"CBCC".
3.For investors,please be cautious for all news.We don't bear any damage brought by late and inaccurate news.
4.If the news we published involves copyright of yours,just let us know.

BRIEF INTRODUCTION

Cnbearing is the No.1 bearing inquiry system and information service in China, dedicated to helping all bearing users and sellers throughout the world.

Cnbearing is supported by China National Bearing Industry Association, whose operation online is charged by China Bearing Unisun Tech. Co., Ltd.

China Bearing Unisun Tech. Co., Ltd owns all the rights. Since 2000, over 3,000 companies have been registered and enjoyed the company' s complete skillful service, which ranking many aspects in bearing industry at home and abroad with the most authority practical devices in China.